PROJECTS m THEORY m APPLICATIONS = CIRCUITS m TECHNOLOGY

= NUTSEVOLTS

wivw.ndtsvolts.com EVERYTHING F |_J_ TRONICS

Kﬂﬂﬁz‘fg;w
live o —
FIaS*hBI‘ Gate

tl AR e I.'ew
-r-a -'

L)Dw-‘u ‘ iMQ‘Clﬂ
11 mtﬁ*“ﬁller

us. $6.50 canapa $7.50

H ‘ 10>

0 "7 1486%02421 7

Web Browser Control of Your

Home Thermostat — Part 2
In this final installment, the physical
connections, some construction details, and
the software that makes the unit work will
be described.

By Jirgen G. Schmidt

Build the LED Centerpiece

Christmas Tree
Brighten the holidays with this colorful
decoration that can be a table centerpiece
or be modified for an outside display.

By Larry W. Jackson

A Flasher, Gate, and Bell for
Your Model Railroad

This simple PIC circuit will enhance your
railroad display with live action and a realistic
bell sound.

By Loren Blaney

Legacy Communication With
the 32-Bit Micro Experimenter

This article explores the use of legacy
communication that exists between the
Experimenter (as a terminal) and a PC.

www.nutsvolts.com

TechKnowledgey 2011

This month’s column covers memory going
soft, speedier graphics cards, a studio in your
shirt pocket, plus some other cool stuff.

PICAXE Primer

Introducing the new PICAXE M2-Class
microcontrollers.

Q&A

Get answers about gel cell charging voltages,
a VFD filament driver, relay logic, and more.

The Design Cycle
Invasion of the chipKIT Max32.
Open Communication

Whatever happened to CB radio?
Smiley’s Workshop

Digital /0 — Part 1.

You Asked and We Listened —
New Forums are ONLINE!

This issue marks the first time that Nuts & Volts content will be directly linked
to our online presence! We have completely rearchitected the forums so they now
closely reflect the content of the magazine. Every regular column now has its own
dedicated forum with the column author as your host! In addition, there are also
forums to support project articles for reader projects and even an area where you
can learn about what it takes to become a writer for the magazine! This new
forum design invites you to interact with the author(s), read about corrections or
modifications to projects, post questions, or just find and interface with lots of
other folks who enjoy the same things you do.As an added bonus, we have
populated the forums with example articles by each author so you can read them
there if you don't have time to read them here.We hope you find the new forum
layout exciting and useful. Please come by, have a look around, and introduce
yourself! To explore the new forums, just point your browser to:
http://forum.servomagazine.com.

Hope to see you online soon! :)

Vern Graner, Forum Moderator, Nuts & Volts

By Thomas Kibalo DEVELOPING CLASSIFIEDS
PERSPECTIVES NV WEBSTORE

Nuts & Volts (ISSN 1528-9885/CDN Pub Agree #40702530) is published monthly for $26.95 per SHOWCASE TECH FORUM

year by T & L Publications, Inc., 430 Princeland Court, Corona, CA 92879.

PERIODICALS POSTAGE PAID AT CORONA, CA AND AT ADDITIONAL MAILING OFFICES. NEW PRODUCTS AD INDEX

POSTMASTER: Send address changes to Nuts & Volts, P.O. Box 15277, North Hollywood, CA
91615 or Station A, RPO. Box 54, Windsor ON N9A 6/5; cpcreturns@nutsvolts.com.

6 NUTSSVOLTS October 2011

ELECTRO-NET

WEB BROWSER CONTROL

OF YOUR HOME

Uls

By Jurgen G. Schmidt

Last month, | described the basic hardware for
implementing a thermostat with an embedded web

server so it can be controlled from a browser. This consists of a TCP/IP Base board using
a Microchip 16-bit PIC24 processor to provide a general-purpose web server, with a
daughterboard that implements the thermostat hardware and interface to the home
heating, ventilation, and air conditioning (HVAC) equipment. In this article, | will describe
the physical connections, some construction details, and the software that makes it

all work.

Network, Power, and
HVAC Connections

While I had the foresight to install CAT-5 cable to the
thermostats when I built my house, | did not run any
power lines. | assumed at the time that | would get power
from the thermostat itself. Alas, while some thermostats
have a fifth wire to provide power, mine did not. Instead,
power for the new thermostat is provided via the unused
pairs of the CAT-5 networking cable. Only pins 1, 2, 3,
and 6 are used for the network connection. If you look at
the Wikipedia article on CAT-5 wiring (see References),
you will see there are two ways to arrange the wires in the
connectors. | used the T568B arrangement, since that

30 NUTSSVOLTS October 2011

matched my existing cables. The Wikipedia article on
Power over Ethernet shows which wires to use for the
power connection. The table at the end of that article
shows that pins 4 and 5 are used for the positive terminal
and pins 7 and 8 are used for the negative terminal.

When | made my cables, | separated the wires and
fed only the network-related pairs into the RJ45
connectors and soldered the other pairs to coaxial 2.1 mm
power connectors. To verify that | had everything figured
out correctly, | made a short test cable, the two ends of
which are shown in Figure 1.

The red connector mounts on my patch panel, from
which it is connected via a jumper to my network switch.
A regulated five volt power supply plugs into the 2.1 mm
jack. The male RJ-45 connector and the 2.1 mm plug
connect to the TCP/IP base board. The live thermostat
end of this can be seen in Figure 2.

The green connector coming out of the wall is
attached to the HVAC control cable. This is a Phoenix
pluggable terminal block that plugs onto a header on the
thermostat board (J1 on the circuit diagram). These
connectors are handy because they can be oriented three
different ways when plugged into the header and are
convenient for testing and installation. If you mount screw
terminals directly on the thermostat board, you have to
juggle the thermostat, screwdriver, and cable while you
attach and detach the wires. Instead, you attach the
terminal block directly to the cable and then plug and
unplug as needed.

Construction Issues

Eventually, the thermostat would be mounted in an
enclosure and attached to the wall in place of the original
thermostat. To simplify the overall assembly, | wanted to
limit the connections to the circuit boards to power,
network, and HVAC control. All the switches, the display,
and connectors should be on the circuit boards. Finding
the right switches was a challenge, along with mounting
the LCD so that everything could be mounted at the right
height behind and through the faceplate. The connectors
between the circuit boards needed to be the right length
to leave just enough clearance for the Magjack.

Plastic enclosures do not come in an infinite array of
sizes and colors. The BUD CU-389 enclosure was just the
right size but only available in black. After drilling the
ventilation holes in the base, | spray-painted it off-white to
match the walls. | custom-made my own faceplates from
some scrap plastic. You can see these in Figure 3. The
translucent gray cover is made from acrylic and the
almond colored cover is made from an old ABS plastic
enclosure. These were made on a ZenBot CNC router.
The routed lettering is filled in with oil pastel.

Some of the components for this project are only
available in surface-mount (SMD) format. That and size
limitations dictated a SMD implementation for all but the
connectors, LCD, relays, and switches. Some of the
connectors are available in SMD format, but | prefer to
use the through-hole version for mechanical sturdiness.
This was my largest SMD project to date. I've used a fine-
tipped soldering iron in the past, but for this project |
decided to invest in a compressed air-powered solder
paste dispenser and got a convection toaster oven to use
as a reflow oven.

Initially, | used a thermocouple attached to my
multimeter to monitor the oven temperature, but now | do
so much surface-mount work that | built an automated
reflow oven controller, based on the thermostat
daughterboard. It provides the display, pushbuttons, and

www.nutsvolts.com/index.php?/magazine/article/october2011_Schmidt

H FIGURE 2.

pin parts for shorts and opens just to avoid headaches
later on.

For the fine-pitched parts, there is a fine line between
applying enough solder paste to avoid dry connections
and too much that results in bridged connections. | also
found that some parts had slightly bent pins that did not
make contact with their pads, so now | check the parts on
the flat side of an old CPU heatsink to be sure all the pins
touch the surface.

Software

Developing the software for the thermostat requires
Microchip’s C30 compiler which is now called “MPLAB C
Compiler for PIC24 MCUs” and the TCP/IP stack version
5.25 (or later) which is part of the Microchip Application
Libraries. You also need the MPLAB IDE to manage the
project and its many files. The student or demo version of

relay driver. (See the sidebar: Flexible Designs.) My
website — www.jgscraft.com — has additional
information about my surface-mount soldering process
and how these boards were made.

Everything worked well, including soldering some of
the bypass capacitors on the underside of the TCP/IP
board. | moved these to the back to reduce clutter on
the top of the PCB. As the flux heats up, there is
enough surface tension to hold the parts in place, so
only a single baking cycle is needed. | used 805-sized
components for the resistors, LEDs, and most of the
capacitors. The bypass 0.1 pf capacitors are 603s.

After baking the boards, the only cleanup | needed
to do was around the PIC 44-pin TQFP part. There were
some solder bridges that were easy to fix by running a
fine-tipped soldering iron between the leads. The
corollary to solder bridges is unsoldered pins which
again can be fixed with a fine-tipped soldering iron and

.025 inch solder. | test all the connections on the multi-

H FIGURE 3.

October 2011 NUTSSVOLTS 31

Flexible Designs

The initial design work for the browser-controlled
thermostat started out as a single, monolithic circuit and
board design. Space limitations suggested a double-decker
design which led to a separation of

attaching the temperature and humidity sensors. However,
these — as well as all the other connections — are just links
via headers to 1/O lines on the processor — they could be
connected to anything.

There are lots of projects in my backlog that need a
browser interface to hardware systems. The TCP/IP base

functions. This ultimately led to the design
of two boards which could be applied to
much more than just a thermostat
application.

| isolated the hardware for the
network connection and embedded
webserver on one board and added some
additional support circuitry to make it
more flexible. The original design using a
28-pin processor had just enough I/O
pins to support the thermostat
application. Switching to a 44-pin part

board will work well for those. Other
projects require a display and pushbutton
interface. | have already repurposed one
of the thermostat daughterboards as a
reflow oven controller. Instead of the two-
line LCD, | used a three-line version from
the same manufacturer. | only needed
one heavy-duty relay and three of the
pushbuttons. The headers attach to a
perfboard that mounts the PIC16F690
controller | used for this, a thermocouple
interface, and power regulator. All of this
I mounted in the same enclosure | used

allows flexibility with other applications. |

was able to develop the TCP/IP stack,
bootloader, and webserver software
without needing the thermostat board. All
the unused 1/O lines, power, and UART2
connections are available on PCB pads
that will support standard 0.1” pitch
headers.

The thermostat interface board has
an LCD, some pushbuttons, relay driver
circuitry, and some relays. Many of the
projects | have seen in Nuts & Volts have
similar interface requirements. The board
does have dedicated circuitry for

for the thermostat. | just deleted some of
the holes from the existing CNC router
program to give me the right faceplate.
The results can be seen in the photos.

The added benefit of flexible designs
is that | make use of the extra PCBs | end
up with. Some boards | order have design
errors, but if the design is flexible, they
can still be used for other projects. Even
for the final boards there is usually a
minimum area per order, resulting in
extra boards. Ideally | would sell them,
but if I can’t, | will eventually find another
use for them.

the C30 compiler works fine, so all your software
development tools are free. The TCP/IP stack is fairly easy
to use, provided you know the basics of the TCP/IP
protocols and you read the documentation for the stack.
Studying the source code and posts on the Microchip
forums related to Ethernet and the processor family you
are using is also a good idea. The forums are well
supported and provide a wealth of information that might
be hard to find elsewhere.

The first step in using the stack is to take one of
Microchip’s sample applications as a starting point and
modify it for your hardware. This is usually the “TCP/IP
Demo App” and is referred to regularly in forum postings.
This implements a webserver, as well as most of the
common TCP/IP components such as UDP, TCP,
Client/Server, email, DHCP, and more. The Demo App is
configured to run on Microchip’s evaluation and
demonstration boards but modifications to the hardware
configuration files will adapt it to run with your own
TCP/IP hardware or — in this case — the thermostat
project. The TCP/IP base board comes with detailed
instructions for configuring Microchip’s TCP/IP stack
version 5.31 to run the Demo App.

This is not my first embedded TCP/IP project and |
don’t recommend anyone start a project like this from
scratch. Get a development kit from Microchip or other
hardware that comes with working software and start
experimenting from there. | started out working with
TCP/IP on a small development board, a sample
application, and a series of tutorials that were known to
work. Over time, my software and hardware evolved from
this in gradual steps. If something failed, | could go back a
step to find out if the software or the hardware was at

32 NUTS3VOLTS October 2011

fault. One incorrectly assigned pin in the software or one
loose solder joint is all it takes to hang up the system, and
it’s hard to tell if hardware or software is the culprit. So,
before adding my own code, | make sure any new
hardware will work with the demo application.

The files that typically need to be modified are
HardwareProfile.h and TCPIPConfig.h. For the TCP/IP base
board, | also needed to modify ENC28)60.c to enable the
clockout signal that drives the CPU clock. The main.c file
contains some hardware initialization routines that need to
be modified to match the hardware, as well. Once the
board tests okay for the basic TCP/IP applications, | can
add support modules for any additional hardware. Then, |
add modules to main.c for my specific application.

The HVAC control software consists of a loop that: 1)
Pauses a while and checks the system clock to see if
certain timeout events have occurred; 2) Reads the
sensor(s) and updates variables with the results; 3) Checks
if a button has been pressed and updates variables
corresponding to the thermostat settings; 4) Checks to see
if any of the relays need to be turned on or off; and 5)
Updates the display. There is no rocket science here, but
there is a control detail that needs attention.

If a heater is set to turn on when the temperature gets
below 60 degrees F, it will do so when the sensor is at
that temperature. However, once the sensor is at 60 or
above again, the heater will turn off and when the
temperature falls again, the heater will turn on. This can
result in the heater trying to turn on and off rapidly as the
temperature fluctuates. To avoid this, we include a dead-
band or hysteresis into the control loop.

Once the heater turns on, it will not turn off again
until the heat is a certain amount, maybe one degree

switch(myAppState)
{

case smMY_IDLE: //=-===== don't work too hard ---------------
//-- check if we need to turn off backlight
if(TickGet() - ticks3 >= TICK_SECOND * 5uL) LEDB_OFF();

//-- check if we need to turn off alternate LCD display
if(TickGet() - ticks4 >= TICK_SECOND * 3uL) showLCD = LCD_MAIN;

if(TickGet() - ticksl >= TICK_SECOND/2@ul)
{

ticksl = TickGet(); . LISTING 2'
myAppState = smMY_STEP1;

break;

case smMY_STEP1: //====== get temp and humidity -----------------
//-- get temp and humdity periodically
if(TickGet() - ticks2 >= TICK_MINUTE/12ul)

ticks2 = TickGet();
sht_rd(&tempC, &humidity); // SHT11 library
3

humidity = (int)(humidity);

tempF = (int)(tempC * 9 / 5 + 32);
myAppState = smMY_STEP2;

break;

// round to integer value

case smMY_STEP2: //=-===== check for button press ----------------

nyAppState = smMY_STEP3;
break;

case smMY_STEP3:

nyAppState = smMY_STEP9;
break;

case smMY_STEP9: /]====== check for any configuration changes and save them

nyAppState = smMY_IDLE;
break;

3 //suitch(myAppState)

higher than the set point; in this case, 61 degrees. This
temperature difference is the dead-band in which no
changes will take place. In the thermostat software, there
is a dead-band of two degrees Fahrenheit. The heater will
turn on at one degree below the set point and will turn off
at one degree above the set point. You can see the details
of this in the thermostat.c file that is included with this
article’s downloads.

Mul¢itasking

For a webserver to work properly, the TCP/IP software
needs to monitor the network connection for incoming
traffic. While the incoming data is processed, it still needs
to continue checking for incoming data so none is lost. In
order to accomplish this, the TCP/IP stack is implemented
as a series of nested loops. Each of these loops has
multiple steps in it. Each step performs a little bit of work,
exits the loop to let the outer loop do a little work, and
then the inner loop resumes with the next little step, exits,
and so on. This is called “cooperative multitasking” and is
described in detail in the TCP/IP stack documentation.
This is important in the context of the thermostat
application because it must also follow this pattern. Listing
1 shows the case statement that runs the TCP/IP stack in
the demo application. This is running in an infinite while()
loop. The blue code highlights where the user application,
MyTasks(), has been added. This gets called every fifth
time through the loop.

The MyTasks() function in the file thermostat.c
implements the thermostat as described above and is

while(1)

switch(smSysState)
{

/=== begin of main TCP/IP processing loop ------

case RUN_IDLE:

//-- toggle heartbeat LED

if(TickGet() - t1 >= TICK_SECOND/2ul)
t1 = TickGet(); ELISTING I.
LED1_I0 *= 1;

3
smSysState = RUN_NET_TASKS;
break;

case RUN_NET_TASKS:
StackTask();
smSysState = RUN_NET_APPS;
break;

// HTTPServer runs here as another state machine

case RUN_NET_APPS:
StackApplications();
smSysState = RUN_MY_APPS;
break;

case RUN_MY_APPS:
MyTasks();
smSysState = RUN_UPDATES;
break;

case RUN_UPDATES:
if(AppConfig.MyIPAddr.Val != eth@_ip_addr)
{

eth8_ip_addr = AppConfig.MyIPAddr.Val;
IPAddressToString(&AppConfig.MyIPAddr, buffer);
printf("New IP Address = %s\n\r", buffer);

#if defined(STACK_USE_ANNOUNCE)
AnnounceIP();

#endif

smSysState = RUN_IDLE;
break;

case SYS_ERROR:
printf("ERROR STATE\n\r");
while(1);

case SYS_RESET:
printf("%s System Reset\n\r", PRODUCT_NAME);
Reset();

3 //switch(smSysState)
3 //uhile(1)

shown in abbreviated form in Listing 2. Whenever it is
called, the state variable, myAppState, is checked and the
corresponding portion of the case statement is processed.
Then, the state variable is updated with the next value and
the function exits to allow the main loop to do some
work. Five iterations of the main loop later, we’re back in
MyTasks() to process the next section of code, and so on.
The application programmer is responsible for making sure
nothing is interrupted for long — or worse — blocked while
waiting for something to happen such as a button press or
serial communication.

The Embedded WebServer

The usual software process for microcontroller
development involves compiling a program, loading the
HEX file, and testing the result. With an embedded
webserver, there are some additional steps. You need to
develop the web pages you want displayed and then you
need to load them onto the server.

Web pages for the TCP/IP stack are created just like
any other website. You can include pictures, JavaScript,
CSS, and any other files that your target browser will
support. The webserver stores the files in the serial Flash
memory, up to four megabytes worth. The primary job of
the webserver is to just deliver the files to the browser.
Dynamic variables in the web files will be filled in by the

October 2011 NUTSSVOLTS 33

N FIGURE 4.

UFSTAIRS Thermostat

13°F Hot

37% Humidity Colder

I Auto I O

H FIGURE 6.

Thermastst Metwark En-w .

ifrgm Omce
1P 101010102
subrnet Masic 255, 255.255,0
Gatewaly: 10010001
BN51 209,18.47.61
b 9ng 43 47 F

webserver before the files are sent to the browser. This is
fine for relatively static content, but for an interactive
application such as a thermostat, we need something
more. We want to be able to see the temperature change
without having to hit the refresh button on the browser.
This is accomplished via an AJAX interface.

AJAX is basically a library of JavaScript functions that
leverage certain browser features for interactive
applications. The AJAX routines communicate with the
corresponding functions in CustomHTTPApp.c which is
part of the TCP/IP stack. A detailed explanation of how
this works would take at least another article on its own.
For now, you'll have to settle for reading about it in the
documentation and sample code from Microchip. The
JavaScript code runs in the user’s browser, periodically
sending updates from the web page to the webserver and
retrieving data from the webserver for updating the
browser display.

H FIGURE 5. For example, the

thermostat web page
has a button for
lowering the set
point. Clicking this
button activates a
piece of JavaScript
code that sends a
message to the
server that the
decrease button has
been clicked. On the
server, the set point
value is decremented
and transmitted back
to the web browser
so the new set point
can be displayed.

Another piece of
code updates the
LCD display. Even if
there aren’t any user-
initiated changes on
the web page, the
JavaScript code
periodically queries
the webserver for updates so that the web page is kept
current. That will happen if the decrease pushbutton on
the physical thermostat is pressed. The set point value is
decremented and displayed on the LCD. The JavaScript
code will retrieve the updated value for display on the
web page.

The web page design can be changed and uploaded
to the webserver without making any changes to the
application code. The only time you would need to
change the application and recompile it is if you want to
exchange more data between the web page and the
application. If you don’t like the way the thermostat web
page is laid out, change it and upload it using the
MPFS2.EXE utility. You can even add additional pages, as
long as they fit into the memory.

Figure 4 shows the default thermostat page. Figure 5
shows an alternative page that is accessed by changing
the web address. Figure 6 shows a configuration page that
changes the host name

http://10.10.10,102/radio. itm Q

UPSTAIRS Thermostat

@ Fan Off

% Humidity

°F DewPL
& Hoeat

Colder Hotier

e _ -— - —

B FIGURE 7.

for the thermostat. Most
computer-based browsers
allow you to access the
web page by the host
name. Unfortunately, the
browser on my EVO
doesn’t do that and |
have to type in the IP
address and save it as a
bookmark.

Installation
\t B FIGURE 8.

The hardest part of

34 NUTSSVOLTS October 2011

the installation is probably arranging
for a network cable to come out
where you plan to mount the
physical thermostat. In most cases,
that should be a matter of dropping
the cable down inside the wall from
the attic or feeding it up from the
basement or crawl space. Attach the
connectors as described in Wikipedia
articles and here.

You do need a DHCP server on
your network to provide the
thermostat with an IP address. Most
cable or DSL routers provide this by
default. Disconnect the old
thermostat from the wall and identify
the function of the wires. The
diagram at http://wiki.xtronics
.com/index.php/
Image:Thermostat.gif should help
you in identifying them if it's not
obvious. Connect the thermostat
wires to the Phoenix terminal block
in the sequence shown on the
thermostat PCB. For now, connect
only the network cable and power.

The heartbeat LED should
blink once per second and
the LCD should display the
current status.

Test the various buttons
to be sure they change
something. If you did not
connect a terminal to see
the debug output, you can
press the “UP” and “DN”
buttons at the same time to
display the IP address and
host name. If all this is
working, connect the
thermostat connector, making sure it
is oriented correctly.

Sequencing the final assembly of
the pieces on the wall was a puzzle
in itself. The enclosure needs to be
attached to the wall. Wires need to
be plugged in. The PCB assembly
needs to be mounted in the
enclosure and then the faceplate
goes on. After playing with some
mockups, | decided to attach the
thermostat daughterboard to the
faceplate with some standoffs. The
TCP/IP base is socketed to the
daughterboard, held firmly in place
by the four eight-pin headers.

After plugging in all the
connectors, you can attach the
faceplate to the enclosure that has
already been attached to the wall. It’s
a tight fit so you need to be sure you
can push any excess wire into the
wall. Figures 7, 8, and 9 show this
sequence. You are now ready to
control your thermostat from your
recliner. NIV

REFERENCES

CAT-5 Wiring
http://en.wikipedia.org/wiki/Cat-5

Power Over Ethernet
http://en.wikipedia.org/wiki/
Power_over_Ethernet

ZenBot CNC Router
www.zenbotcnc.com

Hysteresis Explained
http://wiki.xtronics.com/index.php/
Dead-band_hysteresis

AJAX
http://en.wikipedia.org/wiki/Ajax_%2
8programming%29

Thermostat Circuit
http://wiki.xtronics.com/index.php/
Image:Thermostat.gif

Brush Electronics
http://brushelectronics.com/

Microchip Application Libraries
www.microchip.com/mal

Microchip Bootloader
Application Note
http://ww1.microchip.com/down
loads/en/AppNotes/01094a.pdf

You can contact me at jurgen@jgscraft.com.

An -
easieyr,
" reliable

way to t

the wirel”

l

% ﬂ
f wﬂ- {234
,lgﬁﬂ I oo

'|‘ ,lﬁ‘l"l'ﬂ' i

Ready for wireless but
unsure about the best path?
Anaren Integrated Radio
(AIR) modules offer:

> Industry’s easiest,
most cost-effective RF
implementation

> Low-power RF solution

> Virtually no RF engineering
experience necessary

> Tiny, common footprints

> Pre-certified/compliant:
FCC, IC, ETSI (as applicable)

> Choice of modules based
on TI CC11xx and CC25xx,
low-power RF chips:
433MHz, 868MHZ (Europe),
900MHz, 2.4GHz

To learn more, write
AIR@anaren.com, visit
www.anaren.com/air,
or scan the QR
code with your
smart phone.

ONLY
$999
FOR 10K R

MORE!

A Anaren
Low Pawer RF nP ‘awet RF

What'll we think of next?
800-411-6596
www.anaren.com
In Europe, call +44-2392-232392

Qy EXAS
INSTRUMF_NTS

Available from:
OW | s=avwer-

October 2011 NUTSSVOLTS 35

